
Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for
Autonomous Real-World Reinforcement Learning

Jingyun Yang∗, Max Sobol Mark∗, Brandon Vu, Archit Sharma, Jeannette Bohg, Chelsea Finn

Fig. 1: We propose a system that enables autonomous and efficient real-world robot learning. First, we pre-train a multi-task policy and fine-tune a
pre-trained Vision-Language Model (VLM) as a reward model using diverse off-the-shelf demonstration datasets. Then, we fine-tune the pre-trained
policy online reset-free with the VLM reward model.

Abstract— The pre-train and fine-tune paradigm in machine
learning has had dramatic success in a wide range of domains
because the use of existing data or pre-trained models on the
internet enables quick and easy learning of new tasks. We
aim to enable this paradigm in robotic reinforcement learning,
allowing a robot to learn a new task with little human effort
by leveraging data and models from the Internet. However, re-
inforcement learning often requires significant human effort in
the form of manual reward specification or environment resets,
even if the policy is pre-trained. We introduce ROBOFUME,
a reset-free fine-tuning system that pre-trains a multi-task
manipulation policy from diverse datasets of prior experiences
and self-improves online to learn a target task with minimal
human intervention. Our insights are to utilize calibrated offline
reinforcement learning techniques to ensure efficient online fine-
tuning of a pre-trained policy in the presence of distribution
shifts and leverage pre-trained vision language models (VLMs)
to build a robust reward classifier for autonomously providing
reward signals during the online fine-tuning process. In a
diverse set of five real robot manipulation tasks, we show that
our method can incorporate data from an existing robot dataset
collected at a different institution and improve on a target task
within as little as 3 hours of autonomous real-world experience.
We also demonstrate in simulation experiments that our method
outperforms prior works that use different RL algorithms or
different approaches for predicting rewards. Project website:
https://robofume.github.io

I. INTRODUCTION

In many domains that involve machine learning, a widely
successful paradigm for learning task-specific models is to
first pre-train a general-purpose model from an existing
diverse prior dataset, and then adapt the model with a
small addition of task-specific data [1]–[5]. This paradigm

∗Equal contribution. All authors are affiliated with Department of Com-
puter Science, Stanford University.

Contact: jingyuny@stanford.edu, maxsobolmark@stanford.edu

is attractive to real-world robot learning, since collecting
data on a robot is expensive, and fine-tuning an existing
model on a small task-specific dataset could substantially
improve the data efficiency for learning a new task. Pre-
training a policy with offline reinforcement learning and
then fine-tuning it with online reinforcement learning is a
natural way to implement this paradigm in robotics. How-
ever, numerous challenges arise when using this recipe in
practice. First, off-the-shelf robot datasets often use different
objects, fixture placements, camera viewpoints, and lighting
conditions compared to the local robot platform. This causes
non-trivial distribution shifts between pre-training and online
fine-tuning data, which makes effectively fine-tuning a robot
policy difficult. Indeed, most existing works only show the
benefit of the pre-train and fine-tune paradigm where the
robot uses the same hardware instance in both pre-training
and fine-tuning phases [6], [7]. Second, training or fine-
tuning a policy in the real world often requires extensive
human supervision, which includes manually resetting the
environment between trials [8]–[10] and engineering reward
functions [7], [11], [12]. In this work, our goal is to address
these two challenges and develop a practical framework
that enables robot fine-tuning with minimal time and human
effort.

Over the past few years, there has been a lot of progress
in designing efficient and autonomous reinforcement learning
algorithms. However, no existing system could both utilize
diverse demonstration datasets and learn with minimal hu-
man supervision, without the need for human-engineered
reward functions and manual environment resets. Some
works propose to reduce the need for manual environment
resets using reset-free RL [7], [11], [13], where an agent
alternates between running a task policy and a reset policy

https://robofume.github.io


during training while updating both with online experience.
However, these works do not leverage diverse off-the-shelf
robot datasets. Recent advances in offline RL algorithms
have enabled policies to leverage diverse offline data and
improve further via online fine-tuning [14], [15], but these
new methods have not been integrated into a system that aims
at minimizing human supervision in the fine-tuning phase.
There are also works that propose to eliminate the need
for human-specified reward functions by learning reward
prediction models [13], [16]–[18], but we found that many
of these proposed models can be brittle when deployed in a
real-world RL fine-tuning setup. In summary, although prior
works have presented individual components that are vital
to building a working system for efficient and human-free
robot learning, it is not clear which components one should
use to put together such a system and how.

We design ROBOFUME, a system that enables au-
tonomous and efficient real-world robot learning by lever-
aging diverse offline datasets and online fine-tuning. Our
system operates in two phases. In the pre-training phase, we
assume access to a diverse prior dataset, a few task demon-
strations and reset demonstrations of the target task, and a
small collection of sample failure observations in the target
task. From this data, we learn a language-conditioned, multi-
task policy with offline RL. To cope with the distribution
shift between the offline dataset and online interactions, we
need an algorithm that could effectively digest diverse offline
data, and display robust fine-tuning performance when placed
into an environment different from those seen in the offline
dataset. We find that calibrated offline RL techniques [15],
by underestimating predicted values of the learned policy
from offline data and correcting the scale of the learned Q-
values, make sure that the pre-trained policy can effectively
digest diverse offline data and continuously improve during
online adaptation. To ensure the online fine-tuning phase
requires minimal human feedback, we need to remove the
need for reward engineering by learning a reward predictor.
Our insight is to take a large vision-language model (VLM)
to provide a robust pre-trained representation and fine-tune
it with a small amount of in-domain data so that it is tailored
for the reward classification setup. Pre-trained VLMs have
already been trained on internet-scale visual and language
data. This makes the model more robust to lighting and
camera positioning variations than the models used in prior
works. In the fine-tuning phase, a robot adapts the policy
in the real world autonomously by alternating between
attempting the task and attempting to reset the environment
to the initial state distribution of the task. Meanwhile, the
agent uses the pre-trained VLM model as a surrogate reward
for updating the policy.

We evaluate our framework by pre-training it on the Bridge
dataset [19] and testing it on a diverse set of real-world
downstream tasks: cloth folding, cloth covering, sponge pick-
and-place, placing lid on a pot, and putting a pot in a sink.
We find that our system provides substantial improvements
over offline-only methods with as little as 3 hours of real-
world training. We perform more quantitative experiments

in a simulation setup, where we illustrate that our method
outperforms imitation learning and offline RL methods that
either do not perform fine-tuning online or do not incorporate
diverse prior data.

Our main contributions include (1) a fully autonomous
system for pre-training from a prior robot dataset and fine-
tuning on an unseen downstream task with a minimal number
of resets and learned reward labels; (2) a method for fine-
tuning pre-trained vision-language models and using them to
construct a surrogate reward for downstream RL training.

II. RELATED WORK

Offline RL. Offline RL algorithms [20]–[25] provide a
framework for initializing robot manipulation policies from
offline demonstrations or interaction datasets. Such algo-
rithms can also be extended to include an online fine-tuning
phase after training a policy offline [15], [26]–[32]. Our work
utilizes a recent offline RL algorithm, calibrated Q-learning
(CalQL) [15], a state-of-the-art method that effectively learns
from offline data and continuously improves the policy’s
performance online by explicitly correcting the scale of the
learned Q-values. We show that integrating CalQL helps our
framework effectively utilize diverse prior datasets that have
large distribution shifts from real-world online interactions.

Reset-free RL. Training an RL policy on a real robot
typically requires manual environment resets. To eliminate
such need to manually reset environments, prior works
have studied approaches to learn robot policies in a ‘reset-
free’ setup. Some work [11], [33]–[36] cast the ‘reset-free’
learning problem as a multi-task learning problem, observing
that by learning a set of tasks where some of the tasks could
reset others, an agent could then be trained to perform all
of those tasks without needing manual resets. Other works
[7], [12], [13], [17], [37]–[39] learn both a task policy and a
reset policy for performing the task and resetting to the initial
state distribution. Our work takes an approach between the
two classes of approaches, learning a language-conditioned
multi-task policy that can perform both the target task and the
reset for the target task. Most of these prior works learn from
scratch rather than incorporating prior data and assume that
a reward function is available. ARIEL [7] combines incorpo-
rating prior data with reset-free learning but assumes a hand-
crafted reward function for each environment. They also
collect their own prior dataset on the same robot hardware
set-up as their target task. MEDAL++ [13] learns a reward
classifier with demonstration and online interaction data
via adversarial training, but does not consider incorporating
diverse prior data. Leveraging diverse, off-the-shelf prior
demonstration datasets is desirable since these datasets are
readily available to use and can help a system obtain a policy
initialization for efficient fine-tuning on a target task. Our
system offers an approach to both incorporate diverse prior
data and improve the autonomy of the fine-tuning phase by
learning a model for predicting rewards. In particular, we
found out that by leveraging diverse demonstration data, our
system requires only about 3 hours of training in the real
world compared to 10-30 hours in MEDAL++.



Reward learning. Early works have studied the problem
of learning a reward or cost function in imitation learning.
These works leverage inverse optimal control (IOC) or
inverse reinforcement learning (IRL) to extract a reward
function directly from expert demonstrations [40]–[42]. With
the advent of deep neural networks, more recent works have
explored learning a reward model for an imitation learning or
RL policy [13], [17], [43]–[47]. When using classifier-based
reward models in reinforcement learning, RL agents can
exploit the learned model by exploring states unseen during
classifier training, tricking the model to output incorrect
rewards. To solve such an exploitation issue, many works that
learn reward models leverage adversarial learning, where a
system learns a discriminator that identifies states similar to
those in demonstrations as positives and those visited by the
policy as negatives [13], [17], [44], [47]. However, prior work
has found this training objective to be sensitive to distribution
shifts between offline and online setups, such as lighting and
camera view changes [48]. In this work, we fine-tune vision
language models (VLM), pre-trained on internet-scale data,
to construct a reward model. Large scale pre-training can
learn representations that are robust to natural variations such
as lighting, camera shifts and distractors [16], [49].

Leveraging pre-trained representations as reward pre-
dictors. Several recent works have shown positive results in
utilizing pre-trained vision models [16], [50], large language
models (LLMs) [51] or vision language models (VLMs) [52]
as reward predictors. We tried VIP [16], a method that pre-
trains a visual representation for generating dense reward
functions for novel robotic tasks, and found it insufficient
for the real-world robot fine-tuning setup. In this work, we
fine-tune a pre-trained VLM [53] and find that it performs
most effectively as a reward model. Our proposed system is
flexible and can easily be adapted to use other pre-trained
visual representations and VLMs.

III. PRELIMINARIES

The goal of our method is to leverage diverse prior demon-
stration datasets and learn a novel target task autonomously
in a robot hardware instance that is distinct from the one used
to collect the datasets. Our method assumes access to a prior
dataset Dprior = ∪N

j=1Dj = ∪N
j=1{(s

j
i , a

j
i , s

′j
i )}Ki=1, which

consists of demonstrations of N different tasks τ1, . . . τk. We
assume that all demonstration data uses image observations.
The method will be tested on a downstream task τf , which
is different from any of the prior tasks.

To facilitate learning on the downstream task, we also
assume the availability of a small set of target task demos
Df , target task reset demos Db, and target task failure states
D/. The reset demos Db come from the reset task τb which
resets the environment from an end state of τf to the initial
state distribution of τf . The failure states D/ consist entirely
of image observations that correspond to unsuccessful states
and are collected to aid with the VLM reward learning. In
addition to all the given data (Dprior, Df , Db, D/), each task
τ is also accompanied with a language description l.

IV. ROBOFUME

Our work focuses on designing an efficient and scalable
framework for pre-training on a diverse set of prior demon-
strations and autonomously fine-tuning on target tasks. Our
system consists of an offline pre-training phase and an online
fine-tuning phase. In Section IV-A, we discuss how we pre-
train a language-conditioned multi-task policy on diverse
data that can be fine-tuned online efficiently. Online fine-
tuning requires a reward function to label successes and
failures. In Section IV-B, we introduce a VLM-based clas-
sifier for providing a reward signal to the policy in the fine-
tuning phase. Finally, in Section IV-C, we describe how to
autonomously adapt the pre-trained policy in the fine-tuning
phase by utilizing the VLM-based reward classifier as a
reward signal and chaining forward and backward behaviors
to practice the task with minimal human interventions.

A. Pre-Training a Multi-Task Policy on Diverse Prior Data

Prior work has shown that training a policy using a
conservative Q-value function is an effective way to obtain
a good policy from an offline dataset [22], [24]. However,
fine-tuning can be critical to learn competent policies as prior
data may not provide sufficient coverage, especially for new
tasks or scenes. We leverage CalQL [15] which modifies the
conservative Q-learning algorithm CQL such that it enables
efficient online fine-tuning by enforcing calibration on the
Q-function (i.e. making the Q-value of the learned policy
no lower than the Monte-Carlo returns in the prior dataset).
CalQL allows us to improve the pre-trained policy efficiently
with respect to online interactions.

CalQL requires the training of an actor and a critic. Since
we use image observations, we additionally train an encoder
ϕ(simg) that projects the images into a lower-dimensional
space before giving them as inputs to the actor and critic.
The encoder ϕ is a 4-layer CNN, and is optimized exclusively
against the critic loss. To best utilize the multi-task data, we
encode task descriptions l using pre-trained CLIP embed-
dings, resulting in an embedding z = CLIP(l) which is used
as the task representation. The policy then takes as inputs
a concatenation of the encoded image observation ϕ(simg),
task representation z, and proprioceptive information sp,
processes the concatenated vector through an MLP, and
produces the output action a.

In addition to updating the policy using CalQL, we reg-
ularize policy learning with a behavior cloning (BC) loss,
which encourages the behaviors to stay close to the seen
demonstrations. Not only does this regularization improve
performance of the offline pre-training, but we find that
it also makes it less likely for the autonomous fine-tuning
procedure to exploit false positive rewards from the VLM
reward model. The weight of the BC regularization term
is chosen such that the scales of the RL loss and the BC
loss are similar throughout the pre-training phase. We train
the policy π and the critic Q with datasets Dprior,Df ,Db.
After the offline learning phase, the policy and critic contain
knowledge of all tasks in the prior data and the target task.



B. Fine-Tuning A Vision-Language Model for Rewards

To improve the autonomy of the policy fine-tuning phase,
our agent needs to perform online fine-tuning without manu-
ally labeled or engineered reward functions. To achieve this,
we propose to fine-tune off-the-shelf vision-language models
as reward predictors. Leveraging existing vision-language
models offers a number of benefits compared to utilizing a
pre-trained visual representation or training a reward model
from scratch using in-domain data: First, VLMs are trained
on an Internet-scale dataset that contains diverse image and
language contents. Such models possess better inductive
biases and thus, can be more robust to natural shifts, such
as perturbations to lighting conditions, or distractor objects
that might be seen at test time. Second, since VLMs can take
both visual and language information as input, they provide a
natural interface for communicating the current observation
and current task to the model when requesting a reward label.

We design a VLM-based reward model that takes the
current observation and the task name as input and outputs a
binary label of whether the current observation corresponds
to a successful state or an unsuccessful state with respect
to the task. Given a task name (eg. ‘put green cabbage into
sink’), we first use GPT4 to convert the name to a short
question that could serve as a prompt to know if the task
has been completed or not (eg. ‘is green cabbage placed
in the sink?’). Then, we pass the converted prompt to a
VLM together with the current image of the environment.
The VLM outputs a sparse binary reward, returning success
if the ‘yes’ token has a higher probability than ‘no’ token.

We use MiniGPT4 [53] as the VLM for receiving (image,
task prompt) pairs and answering whether the task has been
successfully completed. We find the zero-shot performance
of the pre-trained VLM to be unsatisfactory. To improve the
VLM’s performance for reward modeling, we fine-tune it
using the prior and target task data. In particular, for every
demonstration, the last 3 states are used as success states
and the ground truth answer is labeled as ‘Yes’; for all
other states, we label the ground-truth answer as ‘No’. To
provide the model with more information about failed states,
we collect a small dataset D/ of images that correspond to
unsuccessful states for the forward and backward target tasks.
We find in our experiments that fine-tuning leads to a more
accurate reward model.

C. Autonomous Online Fine-tuning

The offline pre-training phase produces a single language-
conditioned policy π(·|s, l) that can perform the target and
reset tasks when provided their respective language instruc-
tions lf and lb. The policy is then deployed in a hardware
setup for further online fine-tuning. The outline of our pre-
training and fine-tuning pipeline is presented in Algorithm 1.

Since we aim for a fully autonomous setup, we roll
out the policy in a reset-free manner, alternating between
attempting the target task τf with π(·|s, lf ) and the reset
task τb with π(·|s, lb). We use the fine-tuned VLM from
the previous subsection as the sparse reward function for
the RL algorithm. When the VLM predicts the task has

Algorithm 1: RoboFuME
Initialize agent A = {ϕ, π,Q} and pre-trained VLM r̂.
Initialize forward and backward tasks τf , τb.
// Prepare data and train VLM reward classifier.
Dprior,Df ,Db,D/ ← load data().
r̂ ← finetune vlm(r̂, {Dprior,Df ,Db,D/}).
// Offline pre-training phase.
A.update buffer(Dprior,Df ,Db).
for t = 1 to Toffline do
A.update params with calql().

// Online fine-tuning phase.
s← env.reset(); l← τf .get task lang().
for t = 1 to Tonline do

a← A.act(s, l); s′ ← env.step(a).
A.update buffer({s, a, s′, r̂(s)}).
for i = 1 to Nutd ratio do
A.update params with calql().

if switch then
// Switch task after a fixed interval.
l← env.switch(τf , τb).get task lang().

if interrupt then
// Allow occasional human intervention.
s← env.reset(); l← τf .get task lang().

else
s← s′.

been completed successfully, we terminate the episode and
switch the language instruction for the policy to complete the
other task. In addition to switching tasks upon completion
as predicted by the VLM, we switch after a fixed number
of timesteps (150) to ensure the robot does not become
stuck in bad states. As mentioned in Section IV-A, we
fine-tune the policy using CalQL with an additional BC
regularization term on the critic. We find that without a
BC regularization term, behaviors degrade over the course
of training. By constraining the policy to stay close to the
expert demonstrations from the target and reset tasks, the
agent becomes less likely to exploit false-positives from the
VLM reward model. We use the same fixed BC regularization
weight throughout fine-tuning as we did on the offline pre-
training phase. Our fine-tuning pipeline is implemented on
top of the implementation of MEDAL++ [13]. Please refer
to this work for more details on our training procedure.

V. EXPERIMENTS

We design our experiments to answer the following
questions: Is our method able to improve its performance
through near autonomous online interactions? How does
our proposed VLM reward function mechanism compare
to existing alternatives? And, how does each component of
ROBOFUME or data affect the performance of our method?

A. Real Robot Experiments

Setup. We evaluate ROBOFUME on five different real-
robot manipulation tasks. We use a WidowX 250 robotic arm
with a single third-person camera (Logitech C920, resizing
images to 100x100 pixels). Figure 2 shows the five tasks we
fine-tune and evaluate on. Our method runs autonomously
executing back and forth the target task and the reset target
task for a fixed number of steps or until the VLM predicts



Fig. 2: Illustrations of the five real-world evaluation tasks. (a) Sweep
candies to the top of the tray. (b) fold the yellow cloth. (c) cover a red
wooden cube using the cloth. (d) place the lid on top of the metallic pot.
(e) move the orange pot from the sink to the drying rack.

success. For tasks involving deformable objects (the two
cloth tasks) we manually reset the object to the initial
forward pose every 15-25 episodes, and for the rest of the
tasks we reset every 30-35 episodes. Tasks that use the
kitchen-sink environment (pot lid and pot pnp) frequently
experience episode interruptions when the robot arm applies
more than the maximum allowed torque, for example, when
close to the sink borders. All tasks use 50 forward and
50 backward demos for the target task, and fewer than
20 combined trajectories of failures. We use demos from
the BridgeDataV2 [19], [54] for pre-training our language-
conditioned policy, selecting approximately 1,000 trajectories
with relevant behaviors per task.

Results. Table I shows the results of our method after
pretraining (labeled OFFLINE) and after autonomous fine-
tuning (labeled FT 30K STEPS), comparing with a behavior
cloning (BC) baseline. BC trains a language-conditioned
policy on all the prior and target data. After 30k steps of
autonomous online interaction, our method shows relative
improvement of 51% upon the pre-trained performance, and
outperforms BC by 58% on an average. For pick and place
tasks (pot lid and pot pnp), the fine-tuned policy was more
likely to retry the action if it initially failed to grasp the
object. For candy sweeping, BC and the pre-trained policy
were prone to overshooting and pushing on the border of
the tray after the first sweep, whereas fine-tuning the policy
enabled the policy to chain multiple sweeping attempts for
higher success. Additionally, we find that policies learned by
ROBOFUME (both offline and after fine-tuning) to be more
robust to scene distractors on the candy sweeping task, as
reported in Table III. The policies were trained without any
distractors, but multiple objects not seen during training were
placed in the background during evaluation. ROBOFUME
policies retained 68% of its original performance, compared
to BC which retained only 10% of its original performance.
We hypothesize that BC might be more sensitive to spurious
features, whereas ROBOFUME learns from more predictive
features, leading to more robust policies.

B. Simulation Experiments and Ablations

We use a suite of simulated robotic manipulation envi-
ronments to ablate contributions of different components
of our algorithm. We test on three simulated environments
used in [6]. We consider three bin-sorting tasks in which
different objects (a vase, a tiny bench, and a dumbbell
weight) have to be placed on the correct bin based on the
language instruction, given only a sparse binary reward. We

Task BC ROBOFUME
(OFFLINE)

ROBOFUME
(FT 30K STEPS)

Cloth Covering 45% 60% 80%
Cloth Folding 60% 70% 85%
Candy Sweeping 31% 47% 66%
Pot Lid 60% 40% 95%
Pot PNP 45% 35% 55%

TABLE I: Real-robot results on 5 manipulation tasks. Our method
significantly improves over both offline-only and BC performance after 30k
steps of online interaction (2-4 hours). For the Candy sweeping we report
the average percentage of candies out of a total of 7 that are placed in the
top third of the tray by the end of the evaluation. For all other tasks, we
report success rate over 20 trials.

provide 10 forward and reset demonstrations for each task,
30 failure demos, and 10 demos each for 20 prior tasks
that show picking and placing diverse objects on the same
environment. For all methods that require online experience,
we reset the environment every 1,000 environment steps, i.e.
every 25 episodes of interactions. We compare our method
against the following baselines: (1) BC behavior clones on all
prior and target data; (2) MEDAL++ learns separate forward
and backward policies from target forward and backward
task demonstrations and performs reset-free learning using
an adversarially trained classifier as a reward signal; (3)
MEDAL++ with prior data modifies MEDAL++ to a single
language-conditioned multi-task policy and adds all prior
demonstration data into the replay buffer; (4) ARIEL+VLM
modifies ARIEL [7] to use our VLM reward models as
reward signal, instead of a handcrafted ground-truth reward.
The results of our simulation experiments are presented in
Figure 3. In all simulation tasks, our method ROBOFUME
consistently outperforms prior methods, achieving success
rates at least 20% higher than all baselines within 200k steps
of online fine-tuning.

Ablations on RL Algorithm Design Choices. We eval-
uate our method trained with different critic and actor
optimization procedures on the Vase simulated task, shown
in Figure 4. Training with CalQL was the only method
that yielded strong improvements in this task, with the
other methods either failing completely or obtaining very
poor performance. We find that training without the CalQL
stabilizes training, while the losses for other methods would
explode given the limited data.

Ablations on Reward Models. We compare our VLM
reward function against other choices of automatic reward
functions on the Vase simulated task in Figure 5. VICE [47]
adversarially trains a binary classifier using positive sam-
ples from successful demonstrations, and labeling online
experience as negative. We find that offline pre-training
sufficiently limits the exploitation of the frozen VLM re-
ward, outperforming VICE and thus, bypassing the need
for adversarially trained reward functions. Such adversarial
training can often learn to discriminate based on spurious
shifts in the real world, such as lighting or scene changes,
leading to instability in training outside simulation. VIP [16]
trains a representation function such that the distance in
representation space between the current observation and a



0k 50k 100k 150k
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Weight Task

BC
MEDAL++ w/o Prior Data
MEDAL++ w/ Prior Data
ARIEL+VLM
RoboFuME (Ours)

0k 50k 100k 150k
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0
Vase Task

0k 50k 100k 150k
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0
Bench Task

Fig. 3: Performance of our method on three simulated environments. We report the success rate over the course of training, averaged over three seeds.
Our method ROBOFUME outperforms BC, ARIEL+VLM [7], and MEDAL++ [13] consistently on all three domains.

0k 20k 40k 60k 80k 100k 120k 140k
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

RL Design Choices on Vase Task

Ours
Ours w/o Language Conditioning
Ours w/o CalQL w/o CQL

Ours w/o CalQL
Ours w/o CalQL w/o CQL w/ AWAC

Fig. 4: Performance of our method on the Vase simulated task with
different actor-critic update objectives. Fine-tuning with CalQL is critical
to obtain stable improvements on this task, as training with CQL, AWAC,
or SAC yields poor performance. We also find that language conditioned
policies perform slightly better than one-hot task IDs in simulation.

0k 20k 40k 60k 80k 100k 120k 140k
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Reward Model Choices on Vase Task

Ours VIP CNN BC VICE

Fig. 5: Performance of our method on the simulated Vase task using
different reward functions. Our method uses a fine-tuned VLM reward
function and outperforms VICE rewards, whereas CNN and VIP rewards
fail to improve online.

goal image can be used to construct a dense reward function.
We find that in the Vase simulated task, VIP fails to obtain
good behaviors. Qualitatively, we observe VIP to be prone
to false positives, which are exploited by the RL algorithm.
To test the importance of the VLM large-scale pre-training
compared to our fine-tuning procedure, we train a CNN
classifier from scratch using the same data as we used to
fine-tune the VLM, leading to unsatisfactory performance
compared to fine-tuning a VLM.

How Accurate is the VLM Reward? We analyze the
performance of the VLM reward over the course of fine-
tuning for real-robot experiments. In Table II, we report
the false positive rate, false negative rate, accuracy, and
precision metrics for the VLM reward. The metrics are
computed on the data collected during fine-tuning against a
hand-engineered ground truth reward. We observe that while
false negative rates are high, false positive rates are low
across all tasks. This asymmetry is crucial for successful
RL fine-tuning, as RL policies can learn poor behaviors
by exploiting false positives, but labeling some successful
rollouts as negatives does not necessarily impede learning.

Task FP FN Accuracy Precision

Cloth Covering 6.3% 80.9% 89.4% 15.3%
Cloth Folding 1.2% 59.8% 84.1% 92.0%
Pot PNP 6.1% 81.3% 86.9% 24.3%

TABLE II: VLM reward model accuracy during real robot fine-tuning.
The low false positive (FP) rate indicates that online training has minimal
reward exploitation.

Task BC ROBOFUME
(offline)

ROBOFUME
(fine-tuned @30k)

Candy Sweeping 31% → 3% 47% → 31% 66% → 45%

TABLE III: Robustness of learned policy to distractors. Entries in this
table show the performance of the learned policy “before” → “after” adding
distractors to the scene in the candy-sweeping task. Our system learns a
policy that is much more robust to the distractors.

Task ROBOFUME
(offline)

ROBOFUME
w/o Prior Data

ROBOFUME w/o
Language Cond.

Candy Sweeping 47% 23% 13%

TABLE IV: Evaluating effectiveness of prior data and language con-
ditioned policies. Results show that using prior data and using language
conditioning positively affected the offline performance of our system.

How Important is Diverse Prior Data and Language
Conditioning? We ablate the contribution of diverse prior
data and language-conditioned policies to ROBOFUME by
evaluating the offline performance on the candy sweeping
task, reported in Table IV. When pre-training without using
prior data, that is, exclusively using target data, our method
is able to sweep less than half the amount of candies on
average. Similarly, we find that one-hot task encodings per-
form substantially worse than language-conditioned policies,
as the prior dataset used in real-robot training is larger and
more diverse compared to the simulation experiments.

VI. CONCLUSION AND FUTURE WORK

We introduced an autonomous framework that leverages
existing diverse prior robot demonstration datasets and im-
proves performance in a new robot manipulation skill by
finetuning online. By combining state-of-the-art offline-to-
online RL algorithms, reset-free RL, and VLM-based reward
models, our framework can fine-tune efficiently and nearly
autonomously. Integrating this work with new VLM models
that can exhibit robust zero-shot performance on unseen
manipulation tasks and improving the reset efficiency of this
framework are promising directions for future research.



REFERENCES

[1] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al., “Improv-
ing language understanding by generative pre-training,” 2018.

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[3] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al.,
“Language models are unsupervised multitask learners,” OpenAI blog,
vol. 1, no. 8, p. 9, 2019.

[4] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., “Language
models are few-shot learners,” Advances in neural information pro-
cessing systems, vol. 33, pp. 1877–1901, 2020.

[5] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick, “Masked
autoencoders are scalable vision learners,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition,
2022, pp. 16 000–16 009.

[6] A. Kumar, A. Singh, F. Ebert, Y. Yang, C. Finn, and S. Levine, “Pre-
training for robots: Offline rl enables learning new tasks from a handful
of trials,” arXiv preprint arXiv:2210.05178, 2022.

[7] H. R. Walke, J. H. Yang, A. Yu, A. Kumar, J. Orbik, A. Singh, and
S. Levine, “Don’t start from scratch: Leveraging prior data to automate
robotic reinforcement learning,” in Conference on Robot Learning.
PMLR, 2023, pp. 1652–1662.

[8] V. Kumar, E. Todorov, and S. Levine, “Optimal control with learned
local models: Application to dexterous manipulation,” in 2016 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2016, pp. 378–383.

[9] A. Ghadirzadeh, A. Maki, D. Kragic, and M. Björkman, “Deep predic-
tive policy training using reinforcement learning,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2017, pp. 2351–2358.

[10] K. Ploeger, M. Lutter, and J. Peters, “High acceleration reinforcement
learning for real-world juggling with binary rewards,” in Conference
on Robot Learning. PMLR, 2021, pp. 642–653.

[11] A. Gupta, J. Yu, T. Z. Zhao, V. Kumar, A. Rovinsky, K. Xu, T. Devlin,
and S. Levine, “Reset-free reinforcement learning via multi-task
learning: Learning dexterous manipulation behaviors without human
intervention,” in 2021 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2021, pp. 6664–6671.

[12] C. Sun, J. Orbik, C. M. Devin, B. H. Yang, A. Gupta, G. Berseth,
and S. Levine, “Fully autonomous real-world reinforcement learning
with applications to mobile manipulation,” in Conference on Robot
Learning. PMLR, 2022, pp. 308–319.

[13] A. Sharma, A. M. Ahmed, R. Ahmad, and C. Finn, “Self-improving
robots: End-to-end autonomous visuomotor reinforcement learning,”
arXiv preprint arXiv:2303.01488, 2023.

[14] I. Kostrikov, A. Nair, and S. Levine, “Offline reinforcement learning
with implicit q-learning,” arXiv preprint arXiv:2110.06169, 2021.

[15] M. Nakamoto, Y. Zhai, A. Singh, M. S. Mark, Y. Ma, C. Finn,
A. Kumar, and S. Levine, “Cal-ql: Calibrated offline rl pre-training for
efficient online fine-tuning,” arXiv preprint arXiv:2303.05479, 2023.

[16] Y. J. Ma, S. Sodhani, D. Jayaraman, O. Bastani, V. Kumar, and
A. Zhang, “Vip: Towards universal visual reward and representa-
tion via value-implicit pre-training,” arXiv preprint arXiv:2210.00030,
2022.

[17] A. Sharma, R. Ahmad, and C. Finn, “A state-distribution matching
approach to non-episodic reinforcement learning,” arXiv preprint
arXiv:2205.05212, 2022.

[18] Y. J. Ma, W. Liang, V. Som, V. Kumar, A. Zhang, O. Bastani, and
D. Jayaraman, “Liv: Language-image representations and rewards for
robotic control,” arXiv preprint arXiv:2306.00958, 2023.

[19] F. Ebert, Y. Yang, K. Schmeckpeper, B. Bucher, G. Georgakis,
K. Daniilidis, C. Finn, and S. Levine, “Bridge data: Boosting gener-
alization of robotic skills with cross-domain datasets,” arXiv preprint
arXiv:2109.13396, 2021.

[20] Y. Wu, G. Tucker, and O. Nachum, “Behavior regularized offline
reinforcement learning,” arXiv preprint arXiv:1911.11361, 2019.

[21] X. B. Peng, A. Kumar, G. Zhang, and S. Levine, “Advantage-weighted
regression: Simple and scalable off-policy reinforcement learning,”
arXiv preprint arXiv:1910.00177, 2019.

[22] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement
learning: Tutorial, review, and perspectives on open problems,” arXiv
preprint arXiv:2005.01643, 2020.

[23] T. Yu, G. Thomas, L. Yu, S. Ermon, J. Y. Zou, S. Levine, C. Finn, and
T. Ma, “Mopo: Model-based offline policy optimization,” Advances in
Neural Information Processing Systems, vol. 33, pp. 14 129–14 142,
2020.

[24] A. Kumar, A. Zhou, G. Tucker, and S. Levine, “Conservative q-
learning for offline reinforcement learning,” Advances in Neural In-
formation Processing Systems, vol. 33, pp. 1179–1191, 2020.

[25] W. Zhou, S. Bajracharya, and D. Held, “Plas: Latent action space
for offline reinforcement learning,” in Conference on Robot Learning.
PMLR, 2021, pp. 1719–1735.

[26] N. Ashvin, D. Murtaza, G. Abhishek, and L. Sergey, “Accelerat-
ing online reinforcement learning with offline datasets,” CoRR, vol.
abs/2006.09359, 2020.

[27] R. Rafailov, T. Yu, A. Rajeswaran, and C. Finn, “Offline reinforcement
learning from images with latent space models,” in Learning for
Dynamics and Control. PMLR, 2021, pp. 1154–1168.

[28] J. Lyu, X. Ma, X. Li, and Z. Lu, “Mildly conservative q-learning
for offline reinforcement learning,” Advances in Neural Information
Processing Systems, vol. 35, pp. 1711–1724, 2022.

[29] A. Beeson and G. Montana, “Improving td3-bc: Relaxed policy
constraint for offline learning and stable online fine-tuning,” arXiv
preprint arXiv:2211.11802, 2022.

[30] J. Wu, H. Wu, Z. Qiu, J. Wang, and M. Long, “Supported policy
optimization for offline reinforcement learning,” Advances in Neural
Information Processing Systems, vol. 35, pp. 31 278–31 291, 2022.

[31] S. Lee, Y. Seo, K. Lee, P. Abbeel, and J. Shin, “Offline-to-online rein-
forcement learning via balanced replay and pessimistic q-ensemble,”
in Conference on Robot Learning. PMLR, 2022, pp. 1702–1712.

[32] M. S. Mark, A. Ghadirzadeh, X. Chen, and C. Finn, “Fine-tuning of-
fline policies with optimistic action selection,” in Deep Reinforcement
Learning Workshop NeurIPS 2022, 2022.

[33] K. Lu, A. Grover, P. Abbeel, and I. Mordatch, “Reset-free lifelong
learning with skill-space planning,” arXiv preprint arXiv:2012.03548,
2020.

[34] S. Ha, P. Xu, Z. Tan, S. Levine, and J. Tan, “Learning to walk
in the real world with minimal human effort,” arXiv preprint
arXiv:2002.08550, 2020.

[35] A. Gupta, C. Lynch, B. Kinman, G. Peake, S. Levine, and K. Hausman,
“Demonstration-bootstrapped autonomous practicing via multi-task
reinforcement learning,” arXiv preprint arXiv:2203.15755, vol. 1,
2022.

[36] K. Xu, Z. Hu, R. Doshi, A. Rovinsky, V. Kumar, A. Gupta, and
S. Levine, “Dexterous manipulation from images: Autonomous real-
world rl via substep guidance,” in 2023 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2023, pp. 5938–5945.

[37] B. Eysenbach, S. Gu, J. Ibarz, and S. Levine, “Leave no trace:
Learning to reset for safe and autonomous reinforcement learning,”
arXiv preprint arXiv:1711.06782, 2017.

[38] H. Zhu, J. Yu, A. Gupta, D. Shah, K. Hartikainen, A. Singh, V. Kumar,
and S. Levine, “The ingredients of real-world robotic reinforcement
learning,” arXiv preprint arXiv:2004.12570, 2020.

[39] A. Sharma, A. Gupta, S. Levine, K. Hausman, and C. Finn, “Au-
tonomous reinforcement learning via subgoal curricula,” Advances in
Neural Information Processing Systems, vol. 34, pp. 18 474–18 486,
2021.

[40] A. Y. Ng, S. Russell, et al., “Algorithms for inverse reinforcement
learning.” in Icml, vol. 1, 2000, p. 2.

[41] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in Proceedings of the twenty-first international
conference on Machine learning, 2004, p. 1.

[42] B. D. Ziebart, A. L. Maas, J. A. Bagnell, A. K. Dey, et al., “Maximum
entropy inverse reinforcement learning.” in Aaai, vol. 8. Chicago, IL,
USA, 2008, pp. 1433–1438.

[43] J. Ho, J. Gupta, and S. Ermon, “Model-free imitation learning with
policy optimization,” in International conference on machine learning.
PMLR, 2016, pp. 2760–2769.

[44] J. Ho and S. Ermon, “Generative adversarial imitation learning,”
Advances in neural information processing systems, vol. 29, 2016.

[45] C. Finn, S. Levine, and P. Abbeel, “Guided cost learning: Deep inverse
optimal control via policy optimization,” in International conference
on machine learning. PMLR, 2016, pp. 49–58.

[46] J. Fu, K. Luo, and S. Levine, “Learning robust rewards with adversarial
inverse reinforcement learning,” arXiv preprint arXiv:1710.11248,
2017.



[47] J. Fu, A. Singh, D. Ghosh, L. Yang, and S. Levine, “Variational inverse
control with events: A general framework for data-driven reward
definition,” in Proceedings of the 32nd International Conference on
Neural Information Processing Systems, ser. NIPS’18. Red Hook,
NY, USA: Curran Associates Inc., 2018, p. 8547–8556.

[48] A. Singh, L. Yang, K. Hartikainen, C. Finn, and S. Levine, “End-to-
end robotic reinforcement learning without reward engineering,” arXiv
preprint arXiv:1904.07854, 2019.

[49] S. Nair, A. Rajeswaran, V. Kumar, C. Finn, and A. Gupta, “R3m: A
universal visual representation for robot manipulation,” arXiv preprint
arXiv:2203.12601, 2022.

[50] P. Sermanet, C. Lynch, Y. Chebotar, J. Hsu, E. Jang, S. Schaal,
S. Levine, and G. Brain, “Time-contrastive networks: Self-supervised
learning from video,” in 2018 IEEE international conference on

robotics and automation (ICRA). IEEE, 2018, pp. 1134–1141.
[51] W. Yu, N. Gileadi, C. Fu, S. Kirmani, K.-H. Lee, M. G. Arenas, H.-

T. L. Chiang, T. Erez, L. Hasenclever, J. Humplik, et al., “Language to
rewards for robotic skill synthesis,” arXiv preprint arXiv:2306.08647,
2023.

[52] Y. Du, K. Konyushkova, M. Denil, A. Raju, J. Landon, F. Hill,
N. de Freitas, and S. Cabi, “Vision-language models as success
detectors,” arXiv preprint arXiv:2303.07280, 2023.

[53] D. Zhu, J. Chen, X. Shen, X. Li, and M. Elhoseiny, “Minigpt-4: En-
hancing vision-language understanding with advanced large language
models,” arXiv preprint arXiv:2304.10592, 2023.

[54] H. Walke, K. Black, A. Lee, M. J. Kim, M. Du, C. Zheng, T. Zhao,
P. Hansen-Estruch, Q. Vuong, A. He, et al., “Bridgedata v2: A dataset
for robot learning at scale,” arXiv preprint arXiv:2308.12952, 2023.


	Introduction
	Related Work
	Preliminaries
	RoboFuME
	Pre-Training a Multi-Task Policy on Diverse Prior Data
	Fine-Tuning A Vision-Language Model for Rewards
	Autonomous Online Fine-tuning

	Experiments
	Real Robot Experiments
	Simulation Experiments and Ablations

	Conclusion and Future Work
	References

