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Abstract— We develop a method for learning periodic tasks
from visual demonstrations. The core idea is to leverage
periodicity in the policy structure to model periodic aspects
of the tasks. We use active learning to optimize parameters of
rhythmic dynamic movement primitives (rDMPs) and propose
an objective to maximize the similarity between the motion
of objects manipulated by the robot and the desired motion
in human video demonstrations. We consider tasks with de-
formable objects and granular matter whose state is challenging
to represent and track: wiping surfaces with a cloth, winding
cables/wires, stirring granular matter with a spoon. Our method
does not require tracking markers or manual annotations. The
initial training data consists of 10-minute videos of random
unpaired interactions with objects by the robot and human. We
use these for unsupervised learning of a keypoint model to get
task-agnostic visual correspondences. Then, we use Bayesian
optimization to optimize rDMPs from a single human video
demonstration within few robot trials. We present simulation
and hardware experiments to validate our approach.

I. INTRODUCTION

Periodic tasks such as wiping a table with a cloth, stirring
food, winding cables, or tying ropes are ubiquitous in our
daily lives (see Figure 1). In this work, we address how
robots can appropriately represent and learn periodic policies
by watching humans. While prior works considered learning
manipulation skills from human demonstrations [1]–[6], less
attention has been given to periodic tasks. These tasks repeat
similar motion with only small differences between repeti-
tions. If a robot was able to decompose the demonstration
of a periodic task into periods, it could efficiently learn the
underlying motion and repeat it as many times as necessary.
Prior hierarchical learning approaches investigated learning
of compositional tasks either from demonstrations [7], [8]
or through reinforcement learning [9], [10]. However, these
approaches do not leverage the strong relationship between
repetitions and can be inefficient for learning periodic tasks.

In this work, we propose Visual Periodic Task Learner
(ViPTL): a method with an explicit periodic policy rep-
resentation that enables efficient robot learning of peri-
odic robot manipulation skills from a single, visual human
demonstration. As a policy representation we adapt rhythmic
Dynamic Movement Primitives (rDMPs) [11] which model
cyclic motion, with shift parameters that account for motion
that translates over multiple periods. The benefits of using
rhythmic DMPs are two-fold: (1) they succinctly represent
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Fig. 1: Examples of everyday periodic tasks. Our robot learns to imitate
wiping, stirring and winding from human video demonstrations (top row).

periodic manipulation policies, enabling efficient learning
– the problem of learning a long-horizon periodic task is
reduced to learning a single-period motion of the task; (2)
the learned rhythmic DMP can be repeated any number of
times and the speed and amplitude of the motion can be
adjusted at run time by a simple change of a parameter.

Typically, DMPs are trained on robot trajectories demon-
strated through kinesthetic teaching or teleoperation. How-
ever, this can be non-intuitive to non-expert users. Instead,
we use human video demonstrations that do not contain
trajectories but are easier to record. To train rDMPs from
such videos, we learn a keypoint detector that identifies
consistent keypoints across human demonstrations and robot
executions. Based on this, we can now evaluate the similarity
between a robot execution and the human demonstration
– a quantity we aim to maximize. Keypoint models do
not assume rigid objects and are therefore well suited for
challenging manipulation tasks considered in this paper that
involve deformable objects and granular material. We learn
the keypoint model from task-agnostic play data and leverage
periodicity estimation from [12] to break down the demon-
strated task into single-period components. We use Bayesian
optimization (BO) to optimize similarity of the robot motion
to the human demonstration. To focus BO on promising
regions, we create ‘imagined’ trajectories from segments of
robot play data that serve as initial candidates for BO.

We quantitatively evaluate the proposed method in both
simulation and on a real robot with three manipulation tasks:
table wiping, rope winding, and food stirring (see Figure 1).
We show that our approach can successfully learn challeng-
ing periodic manipulation tasks that involve deformable and
granular objects from a single human demonstration within
50 robot trials. Our comparisons to existing approaches and
ablations show how our perception and optimization modules
contribute to the overall success of the method.

ar
X

iv
:2

10
9.

14
07

8v
1 

 [
cs

.R
O

] 
 2

8 
Se

p 
20

21



Keypoint ModelPlay Data

train
RepNet

BORhythmic DMP Environment

Execute Score similarity between 
human demo and execution

Human Demo

Update and propose next candidate

Repetition Count

UNSUPERVISED VISUAL REPRESENTATION MODULE

Food Stirring

Table Wiping

TASKS WE CONSIDER

Rope Winding

REAL ROBOT SETUP

PARAMETER OPTIMIZATION MODULE

Fig. 2: Overview of the proposed approach. Our method is composed of two modules: the unsupervised visual representation module and the parameter
optimization module. The unsupervised module learns a model for keypoint correspondences between the motions of the objects in the human demonstration
and the robot trials. The parameter optimization module uses active learning to adjust the parameters of the rhythmic DMP controllers.

II. RELATED WORK

A. Modeling Periodic Motion

Periodic motion is a common component of robotic tasks.
Various methods have been proposed to model such motion.
Early literature in robotics and neuroscience used limit cycles
and central pattern generators to model periodic motions for
locomotion [13]–[16]. Recently, pattern generators have also
been used with robotic manipulators [17], [18]. However,
limit cycle formulations are not easily amenable to learn-
ing arbitrary periodic trajectories. In such cases, dynamic
movement primitives (DMPs) [11] can provide the needed
flexibility, and ease of use with learning-based approaches.
DMPs have been used for periodic manipulation tasks,
writing and wiping being the most common [19], [20]. In
comparison, our proposed work also learns to do winding
and stirring tasks, but from visual demonstration that are not
annotated with human hand poses. Fourier movement prim-
itives (FMPs) [21] are an extensions of DMPs using Fourier
series as basis functions. While our system is agnostic to the
specific choice of periodic parameterization of the control
policies, here we use rhythmic DMPs. In future work, we
will investigate alternative representations such as FMPs.

B. Periodicity Estimation

There has been a significant interest in estimating pe-
riodicity in the computer vision community. Prior works
use Fourier analysis [22]–[24], singular value decomposi-
tion [25], or peak detection [26] to detect repetition by
converting the motion in videos to one-dimensional signals.
Recent works propose detecting non-stationary repetitive
motion using wavelet transforms [27], 3D convolution net-
works [28], and self-similarity between video frames [12].

In this work, we use RepNet [12] for periodicity estima-
tion. We find that once trained on the Countix dataset in [12],
RepNet can successfully decompose human demonstrations
of various manipulation tasks into single-period segments
without any further finetuning.

C. Learning from Human Demonstrations

Several works in learning from human video demonstra-
tions propose using image-to-image translation to transform
human demos to robot executions [1]–[4]. However, these

require a large amount of training data. Recent works [5], [6]
leverage action recognition models, such as the action classi-
fiers trained on the 20BN Something-Something dataset [29],
to identify whether the robot is performing the desired task.
However, while these classifiers are useful for identifying the
class of motions for short interactions, we show that they do
not retain enough information to analyze tasks with longer
duration and multiple repetitions. Furthermore, the ability of
these methods to handle highly deformable objects, such as
cloth and ropes, has not been studied yet.

Our approach uses a small amount of task-agnostic, un-
paired and unlabeled ‘play’ data [30] to train a keypoint
model that makes it possible to quantitatively compare
human demos and robot executions. ‘Play’ data is useful,
because it can be collected without supervision and using a
task-agnostic, randomized policy. However, unlike [30] that
explores using hours of such data, we focus on a much more
data-efficient alternative. We collect 10 minutes of human
‘play’ data and 10 minutes of robot ‘play’ data (unpaired),
and then use a single human demonstration video to infer
the appropriate parameters for the robot control policy.

D. Sample-efficient Robot Learning

We aim to imitate a visual human demo on a robot with
high sample-efficiency. Prior works have explored model-
based methods [31]–[33] and self-supervised exploration
algorithms [34]–[39] to improve sample efficiency, but these
methods often require much more data on the robot and do
not directly generalize to visual imitation learning. Some
works utilize large-scale training in simulation and transfer
the learned policies to the real robot [40], [41]. Since our
tasks include hard-to-simulate deformable and granular ob-
jects, sim2real is not applicable in our setup. In contrast, we
use Bayesian Optimization (BO) to optimize parameters of a
rhythmic DMP. BO is capable of learning the demonstrated
manipulation skills within 50 trials on the real robot.

III. PRELIMINARIES
We consider the problem of learning periodic manipulation

skills from a single human demonstration. We assume that
the human demonstrates a periodic task that is performed
for at least 2 periods. Given a human demonstration VH =
(I1H , . . . , I

TH

H ) as a sequence VH of TH RGB image frames
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Fig. 3: Unsupervised keypoint learning from play data. The play data
consists of unpaired, unlabeled and task-agnostic human and robot motion
recorded from the same viewpoint. It is used to train a keypoint model that
finds consistent keypoints across human and robot demonstrations. This
allows to compute a keypoint-based distance between human and robot
videos suitable for guiding the search for the best matching robot motion.
Robot trajectories are included in the robot play data, but they are not used
for keypoint learning purposes.

ItH , the robot is allowed to execute a total of 50 trials in the
environment to learn the demonstrated skill. In each trial,
the robotic agent executes a trajectory τR = (x1R, . . . , x

T
R)

where xt denotes the robot end-effector position at timestep
t. We denote the corresponding execution video of this
executed trajectory as VR = (I1R, . . . , I

T
R), where ItR denotes

the camera image at timestep t. We measure the similarity
between the object motion in the human demonstration and
in the video of the robot execution using consistent keypoints
across the two videos (see Section IV-A). In this work, we
combine BO and DMPs to maximize this similarity score,
and present our method in Section IV. Below we provide the
technical background for BO and DMPs.

A. Bayesian Optimization

In Bayesian optimization (BO), an optimization problem is
viewed as finding parameters w that optimize some objective
function fBO(w) : fBO(w∗) = maxw fBO(w). fBO is com-
monly modeled with a Gaussian process (GP): fBO(w) ∼
GP(m(w), k(wi,wj)). At each trial, to select the next
promising candidate w, BO optimizes an acquisition func-
tion, e.g. the Upper Confidence Bound (UCB) [42], which
explicitly balances exploration (high posterior uncertainty)
vs exploitation (high posterior mean estimate): UCB(w) =
m(w) + βVar(w). The kernel defines a similarity function
on the search space. RBF kernel is a common choice:
k(wi,wj) = σ2

k exp(− 1
2‖wi-wj‖T2 diag(l)−2‖wi-wj‖2),

where σ2
k and l are signal variance and a vector of length

scales, respectively. In practice, σ2
k is a hyperparameter

optimized automatically by maximizing marginal likelihood.

B. Dynamic Movement Primitives (DMPs)

DMPs are trajectory generators whose parameters can be
learned from demonstrations of desired robot end-effector
trajectories. They combine linear fixed-point attractors with
non-linear function approximators to encode complex trajec-
tories, while maintaining convergence guarantees. We refer
readers to [43] for a detailed overview.

The transformation system of a DMP consists of a damped
linear feedback term, and a forcing function f :

τ ż = αz (βz(g − x)− z) + f ; τ ẋ = z , (1)

BO

Sample BO Parameters
(Single-period 

Waypoints)

Fit Rhythmic DMP
with Predicted 

Periodicity

Update

Label with 
Human Demo

Score: 0.42

Execute Trajectory

Fig. 4: Our Bayesian optimization pipeline.

where x is position, g is the goal, αz and βz are constants, τ
is a temporal scaling factor, z is the scaled velocity, and the
output of the transformation system is the scaled acceleration
ż. The second component of DMPs is a canonical system
which replaces time, and enables scaling the trajectory to
different time lengths. The canonical system is different
between rhythmic and discrete DMPs; in the discrete case it
represents ‘time left’ and goes to 0 at the end of the motion,
while in the rhythmic case it represents the time from the
start, and goes up linearly. Specifically, in rhythmic DMPs,
the first-order canonical system τ φ̇ = 1 encodes the phase
φ, increasing linearly as motion progresses.

In rhythmic DMPs, the forcing function f is parameterized
by φ and consists of cyclic basis functions:

f =

∑
i Ψiwi∑
i Ψi

r ; Ψi =exp (hi (cos (φ− ci)− 1)) , (2)

where Ψ is a function of the canonical system, and the
weights wi are commonly learned using locally weighted
regression [44]. The cyclic nature of basis functions ensures
that the transformation system yields cyclic motion, as the
canonical system unrolls. Typically, the goal g of a rhythmic
DMP is set to the mean of the demonstration trajectory and
kept fixed. Discrete DMPs are shown to generalize well
to changing goals, and [43] present ways to continuously
change goals to new locations without causing discontinuity
in the acceleration ż. We adapt [43] to smoothly move the
goals of rhythmic DMPs between executions. This contin-
uously modulates the mean point of the limit cycle of the
DMP, allowing us to model motions that are mostly cyclic,
but slightly shifting over time, e.g. as in wiping a surface.

IV. METHOD

Our framework is composed of two parts: (1) a represen-
tation learning module, where a keypoint detection model
is trained to extract consistent keypoints from independently
collected and non-task-specific human and robot play data;
(2) a parameter optimization module, where BO searches
for a rhythmic DMP that when executed produces a robot
video that matches the human demo in terms of the detected
keypoints. These modules are detailed in Sections IV-A and
IV-B, respectively. Figure 2 shows an overview.

A. Unsupervised Keypoint Learning from Play Data

To learn a manipulation skill from a human demo, we
need a way to evaluate the similarity between the demo
and robot execution. To learn such a similarity score, we
assume that the agent has access to a small amount of human
and robot play data. Play data is a dataset of self-guided,



task-agnostic, and diverse interactions. The human play data
DH = (I1HP , . . . , I

THP

HP ) is a sequence of THP unlabeled
RGB image frames, while the robot play data is a sequence
of TRP RGB image frames DR = (I1RP , . . . , I

THP

RP ) accom-
panied by robot end-effector positions x1RP , . . . , x

TRP

RP ∈ R3.
Note that DH and DR are unpaired and independent.

To acquire a visual representation for the manipulated
object that is invariant to change of agent between human and
robot, we adopt a variation of the Transporter architecture
[45] – an unsupervised keypoint detection model that learns
to generate temporally consistent keypoints Ψ∗(I) on image
input I . The learning process is illustrated in Figure 3.
Humans and robots may move their hands very differently to
generate the same object movement. To make sure that the
keypoint model Ψ∗ allocates keypoints to the manipulated
objects and not to the human and robot hand, we mask
these areas in the reconstruction loss [45] when training
the keypoint model. This is achieved by using the com-
monly available hand detectors and depth filtering methods,
respectively, when computing the reconstruction loss that the
Transporter is trained on. With this, the keypoint model is
more likely to place keypoints on the objects, and be robust
to different visual appearance of human and robot hands.

After the keypoint model is trained, we process the human
demo VH and robot execution VR to produce sub-sampled
videos VH′ = {IiH′}Ns

i=1 and VR′ = {IiR′}Ns
i=1 that both have

length Ns. We then define the distance between the human
demo and the robot execution as:

D(VH , VR)=
1

NsNk

Ns∑
i=1

‖Ψ∗(Ii
H′ )−Ψ∗(Ii

R′ )‖1, (3)

where ‖·‖1 denotes L1 norm and Ψ∗(I) denotes the locations
of the Nk detected keypoints of an image I normalized to
range [0, 1]. Note that by using the above distance function,
we are optimizing robot trajectories to align with the given
human demo (i.e. when the human is p% into the demo, the
robot also aims to be roughly p% into the execution).

B. Few-shot Motion Optimization with BO

With the learned keypoint representation for comparing
human demos and robot executions, the problem of learning
a periodic robot manipulation task from human demos can be
reduced to searching for trajectories that, when executed on
the robot, produce execution videos that have low distance
to the provided human demo. This means that we can use
the keypoint-based distance between a robot execution and
a human demonstration as the objective for our optimization
problem formulated in Section III. The remaining problem is
thus how to efficiently find trajectories to be executed on the
robot that best imitate the human demo. Training robot skills
on large amounts of simulated data and then using sim2real
techniques to transfer the skill to a real system is a common
robot learning paradigm. However, deformable and granular
objects are hard to simulate realistically and therefore pose a
challenge for sim2real transfer. Thus, we propose a method
to directly optimize the motion policy on the real robot.

Robot Play 
Data xxx

Link Segments of 
Length xx

Label with Single-
period Human Demo

Waypoints

Traj. Segments
Smoothed Traj.

Initial Candidates

( )

Labeled Score - 0.42

Fig. 5: Imagined trajectories as initial candidates for BO.

1) Periodicity Estimation with RepNet: To imitate pe-
riodic manipulation skills shown in the human demo, we
need to first determine the periodicity of this demo. We
use RepNet [12] – an approach that can estimate when and
how often a periodic task is repeated in a video to estimate
periodicity. We observe that the RepNet model trained on
the Countix dataset can reliably predict the periodicity of the
human demos that we consider. So, we use the trained model
(without any finetuning) to predict the number of periods
nrepH = RepNet(VH) of the human demo VH .

2) Motion Optimization with BO: We propose to optimize
single-period waypoints as BO parameters, then use rhythmic
DMPs to fit a smooth trajectory and unroll it for multiple
periods, as illustrated in Figure 4. Concretely, BO optimizes
single-period waypoints: w = [v1,v2, . . . ,vL]. To execute
a BO sample, we apply a cubic smoothing to the sampled
waypoints, then fit a rhythmic DMP to this smooth trajectory
and execute it for nrepH periods, with the goal g of the DMP
shifting vL − v1 between two consecutive periods.

During conventional BO, the candidates for the first few
trials are sampled at random. In the subsequent trials, an
acquisition function samples N candidates at random from
the search space, then evaluates their posterior mean and
variance to select the most promising next candidate. How-
ever, in high-dimensional spaces (above 10D) it is unlikely
to sample a well-performing candidate randomly. Even with
waypoints as the search space for BO, the space is very
large. A leading BO method that recently reported success
in high-dimensions [46] was not able to reliably succeed
on our tasks within 50 trials. Hence, the need to further
improve the data efficiency of BO. Our insight is that
robot play data contains meaningful interactions that can
help BO to focus on the promising regions of the search
space. To effectively use this data, we first generate a set
of Ns play data segments S = {τ1s , τ2s , . . . , τNs

s }, where
each element τ is = xti:ti+Ts

RP is a randomly sampled fixed
length trajectory in the robot play data of length Ts. Then,
we generate ‘imagined trajectories’ by rejection sampling
segment sequences τI = (τk1

s , . . . , τkm
s ) such that the end

position τki,Ts
s of each segment τki

s is less than dseg away
from the start position τ

ki+1,1
s of the next segment τki+1

s

in L2 distance. Then, we can find the corresponding image
frames of τI to construct an ‘imagined’ video VI , and this
video can be evaluated using the objective score function
D(V ∗

H , VI), where V ∗
H is a single-period demo trimmed from

the original human demo according to RepNet period split.
We then select the top Nimagined trajectories with the highest
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Fig. 6: The left part shows the objectives used in the methods we compare, then explains our evaluation metric – ‘performance’ in plots on the right. Plots
(a)-(c) show the performance of the competing methods in the 3 tasks we consider, in simulation. For the Direct Imitation baseline, executions are fixed,
no finetuning between trials. We include two versions of this baseline: (1x) – trained from the robot play data; (2x) – trained from twice the amount of
that data, so that the total size of training data exceeds the size of robot play data + the 50 trials of interactions. The performance saturates, showing no
benefit from additional training data (red lines match). For the other 3 methods, we execute 50 trials for each run. For every method, we do 3 runs using 3
random seeds. The solid lines denote the mean of performance across 3 seeds; the shaded areas denote the standard deviation of the performance values.
The MBIL line denotes model-based imitation learning baseline, which learns dynamics using keypoints as states and uses MPC for planning.

estimated scores and construct a set of initial candidates:
{wi}i=1...Nimagined . Each candidate wi is represented by a set
of waypoints sub-sampled from the imagined trajectory. We
illustrate this process in Figure 5.

To warm-start BO, we sample the candidates for the
first few trials from {wi}i=1...Nimagined . By construction, these
represent the waypoints of the trajectories that have a high
alignment with the human demo for the 1st period. In the
subsequent trials, we augment the pool of the candidates
considered by the acquisition function by sampling in the
regions close to these initial candidates. With that, the
acquisition function can help us focus the search on the
regions close to the initial candidates, but is not restricted
to these regions. Hence, we avoid placing hard restrictions
on the search space of BO based on prior information. As
a result, our BO extension retains theoretical guarantees of
BO, such as consistency and regret bounds.

V. EXPERIMENTS
In our experiments, we aim to answer the following ques-

tions: (1) does our framework successfully learn to perform
periodic tasks from a single human demonstration; (2) does
our proposed framework perform better than methods that do
not exploit periodicity in the target task; (3) is our proposed
keypoint-based representation more suitable for learning
from human demonstrations than other representations (e.g.
latent vectors generated by 20BN classifiers)?

We consider 3 challenging manipulation tasks: (1) Table
Wiping, where the objective is to wipe a rectangular table
surface with a cloth using back-and-forth motions, shifting
to cover all the visible the area of the table; (2) Rope
Winding, where the objective is to wrap a rope around
a fixed spool by repeating circular winding motion several
times; (3) Food Stirring, where the objective is to stir
granular objects in a tray with a spatula/spoon.

Metric: In our method, the baselines and ablations are
each optimizing a different objective function. Therefore,
we define a performance metric that is comparable across
the different approaches. We prepare an exemplary robot
trajectory τE = (x1E , . . . , x

TE

E ) that, when executed, pro-
duces the same effect on the objects being manipulated as

the human demo. During execution, the robot will execute
a trajectory τR = (x1R, . . . , x

T
R), where xt denotes the

robot end-effector position at timestep t. Performance of
an execution that produces robot trajectory τR is evaluated
by the similarity between τE and τR. More concretely, the
performance is computed to be κ(−‖τE − τR′‖1), where
τR′ is a sub-sampled trajectory of τR with length TE and
κ is a linear transformation that ensures the score is in
range [0.0, 1.0]. Note that τE are only used for evaluation
purposes and are not visible to any of the methods. Figures 6
and 7 plot this metric for our simulation and hardware
experiments. The methods that use BO each optimize a
different objective function e.g. keypoint-based objective for
ViPTL (our method), cosine distance between latent features
for Twentybn Classifier. We include plots of these in the
supplementary video to illustrate BO progress over trials.

A. Simulation Experiments

1) Baselines and ablations: To pick appropriate baselines
and ablations, we need methods that can imitate a single
visual human demonstration on the robot. Standard image-
based model-free and model-based RL methods [31], [32],
[47], [48] cannot operate in this setup because images from
human demo and robot execution are visually different. Thus,
we use two baselines that use our keypoint-based visual
representation as state and an ablation that does not use this
visual representation to test whether our visual representation
contributes to the final performance of our method.

First we have Direct Imitation, which learns a function
that maps keypoints at the current timestep to desired robot
end-effector positions. This function is trained on robot play
data, which contains both keypoints and robot trajectories.
To imitate a human demonstration, we use keypoints from
the demo video frames as input and output desired robot
end-effector positions. The resulting robot trajectory is then
executed by fitting a DMP to the predicted robot positions.
This baseline studies the use of BO versus a trained neural
network for optimizing DMP controllers.

Second we have Twentybn Classifier, an ablation in which
the BO objective is based on the video activity classifier [49]

https://yjy0625.github.io/projects/viptl/


0 10 20 30 40 49
Number of Trials

0.5

0.6

0.7

0.8

Pe
rfo

rm
an

ce

ViPTL (Our Method)
Twentybn Classifier
Direct Imitation

(a) Table Wiping

0 10 20 30 40 49
Number of Trials

0.4

0.5

0.6

0.7

0.8

Pe
rfo

rm
an

ce

(b) Rope Winding

0 10 20 30 40 49
Number of Trials

0.4

0.5

0.6

0.7

0.8

0.9

Pe
rfo

rm
an

ce

(c) Food Stirring

Repeat Repeat

Repeat

Flexible Execution of Learned Skills

Repeat

Learned Skill Execution

Fig. 7: Results for the real robot experiments. Plots (a)-(c) show performance comparisons (for details of the methods see Section V-A.1, for evaluation
metric details see Figure 6). The right part shows skills learned with our method executing at different scales and numbers of repetitions without retraining.

trained on the 20bn dataset [29]. Both the human demonstra-
tion and robot execution video are input to the classifier to
obtain two feature vectors from the last hidden layer. The
objective function is the cosine distance between these two
features. We use this baseline to test if the keypoint-based
visual representation is a suitable visual representation for the
learning from human demo setup compared to alternatives.

Third we have MBIL, a model-based imitation learning
baseline that relies on a learned dynamics model of the key-
points. The model is trained on robot play data and updated
every episode as new interaction data is collected. This model
is then used to plan actions to imitate the human demo. At
every timestep, we run single-step model-predictive control
(MPC) by sampling 5,000 random actions and executing the
action that leads to the smallest keypoint distance to the
corresponding human demo frame. This baseline tests if our
method outperforms model-based RL methods like [50] that
do not model periodicity of the task.

2) Experimental Setup: For all our experiments, we use an
image size of 512×512. In the distance function, the number
of sub-sampled frames Ns is set to 10·nrepH . To create masks
for the human hand, we use the MediaPipe library [51] to
detect the hand skeleton from an image frame and use the
colors at the joints of the skeleton to construct a color range
mask for the hand. We mask out the robot based on the depth
readings (since robot pose is known). In BO, we optimize
L=7 trajectory waypoints in the wiping and winding, L=5 in
stirring. We use UCB [52] with β = 0.1 in the acquisition
function of BO. We use automatic hyperparameter optimiza-
tion to find the appropriate length scales of the RBF kernel.
When constructing imagined trajectories, we use 10 play data
segments of length Ts = 10 each and use a distance threshold
of dseg = 1

6λdisp. We generate 5,000 imagined trajectories and
select the top Nimagined = 100 trajectories as initial candidates
for BO, and use 10 of these in the first 10 BO trials.

3) Quantitative Results: To evaluate the performance of
our framework in comparison to competing methods, we run
all methods and baselines for 50 trials in all tasks using 3
different random seeds. The performance of all the methods
during BO trials is shown in Figure 6. The Direct Imitation
and MBIL baselines cannot imitate the human demo well
in Table Wiping and Rope Winding, since modeling
or capturing dynamics of the deformable objects in these
tasks is difficult. The suboptimal performance of these two

baselines shows that our method outperforms methods that
rely on single-step predictions or learning accurate dynamics
models and do not exploit periodicity in the target task. The
Twentybn Classifier baseline achieves limited performance
in all three tasks as it lacks precision in the classifier-based
distance metric used to compare the given human demo
with robot executions. This shows that the keypoint-based
cost function is a crucial component of our method that is
more suitable for the learning from human demos setup.
In contrast, our method (ViPTL) is able to achieve good
performance in all three tasks, outperforming both the Direct
Imitation baseline and the Twentybn Classifier ablation. We
include qualitative results in the supplementary video.

B. Real Robot Experiments

1) Hardware Setup: Our hardware setup (Figure 7) in-
cludes a Kinova Gen3 robot arm with a Robotiq 2F-85
gripper and an Intel RealSense D435 camera. The table
workspace measures 50×43 cm, and the camera is mounted
at the height of 68 cm at one side of the workspace. The
camera provides the RGB image data during experiments
and is positioned to view the table surface. We use velocity
control in the Cartesian (end-effector) space to execute the
desired trajectories on the robot.

2) Quantitative Results: We select the Twentybn Clas-
sifier ablation and the baseline with the most consistent
performance across tasks in simulation experiments (Direct
Imitation) to compare with our method (see Figure 7). Our
method is able to quickly find high-scoring points due to
an effective warm-start and fine-tune the generated motion,
leading to consistently improving performance through out
the 50 trials, while the baselines are unable to catch up
with the performance of our method for similar reasons as
mentioned in simulated experiments.

VI. CONCLUSION

We introduced Visual Periodic Task Learner (ViPTL), a
method for representing periodic manipulation policies and
efficiently learning them from a single human demonstration.
We show that ViPTL succeeds on three robot manipulation
tasks that involve deformable and granular objects. This work
opens the opportunity to benefit from the periodic structure of
many tasks commonly seen in everyday life. In future work,
we intend to extend our method to handle the initial stages
of the tasks, such as grasping and other transient motions.

https://yjy0625.github.io/projects/viptl/
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